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Abstract

We consider the use of multi-agent systems to control
network routing. Conventional approaches to this task
are based on Ideal Shortest Path routing Algorithm
(ISPA), under which at each moment each agent in the
network sends all of its traffic down the path that will
incur the lowest cost to that traffic. We demonstrate
in computer experiments that due to the side-effects
of one agent’s actions on another agent’s traffic, use of
ISPA’s can result in large global cost. In particular, in
a simulation of Braess’ paradox we see that adding new
capacity to a network with ISPA agents can decrease
overall throughput. The theory of COllective INtel-
ligence (COIN) design concerns precisely the issue of
avoiding such side-effects. We use that theory to derive
an idealized routing algorithm and show that a prac-
tical machine-learning-based version of this algorithm,
in which costs are only imprecisely estimated substan-
tially outperforms the ISPA, despite having access to
less information than does the ISPA. In particular, this
practical COIN algorithm avoids Braess’ paradox.

INTRODUCTION

There is a long history of AI research on the de-
sign of distributed computational systems, stretch-
ing at least from the days of Distributed AI through
current work on Multi-Agent Systems (Huhns 1987;
Sandholm & Lesser 1995). One particularly impor-
tant version of such design problems, exhibiting many
of the characteristics of the more general problem, in-
volves a set of agents connected across a network that
route some form of traffic (here enumerated in “pack-
ets”) among themselves, and must do so without any
centralized control and/or communication. The goal of
the system designer is to have the agents act in a way
that optimizes some performance measure associated
with that traffic, like overall throughput (Bertsekas &
Gallager 1992).

Currently, many real-world solutions to this problem
use Shortest Path Algorithms (SPA), in which each
agent estimates the “shortest path” (i.e., path mini-
mizing total cost accrued by the traffic it is routing)
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to each of its destinations, and at each moment sends
all of its traffic with a particular destination down the
associated (estimated) shortest path. Unfortunately,
even in the limit of infinitesimally little traffic, per-
formance with SPA’s can be badly suboptimal, since
each agent’s routing decisions ignore side-effects on the
traffic of other agents (Korilis, Lazar, & Orda 1997;
Wolpert, Tumer, & Frank 1999). Indeed, in the famous
case of Braess’ paradox (Bass 1992), not only does this
scheme result in suboptimal global cost, it causes every
agent’s traffic individually to have higher cost than at
optimum. This even holds when each agent’s estimated
costs are (unrealistically) taken as perfectly accurate,
so that those agents are all using Ideal SPA’s (ISPA’s).
This is an instance of the famous Tragedy Of the Com-
mons (TOC) (Hardin 1968).

As an alternative to ISPA’s we present a solution
to the Braess’ paradox bases on the concept of COl-
lective INtelligence (COIN). A COIN is a multi-agent
system where there is little to no centralized commu-
nication or control among the agents and where there
is a well-specified world utility function that rates the
possible dynamic histories of the collection (Wolpert,
Tumer, & Frank 1999; Wolpert & Tumer 2000b; 2000a;
Wolpert, Wheeler, & Tumer 2000). In particular,
we are concerned with agents that each use reinforce-
ment learning (Kaelbing, Littman, & Moore 1996;
Sutton & Barto 1998; Sutton 1988; Watkins & Dayan
1992) to try to achieve their individual goal. We con-
sider the central COIN design problem: How, without
any detailed modeling of the overall system, can one set
wtility functions for the individual agents in a COIN to
have the overall dynamics reliably and robustly achieve
large values of the provided world utility? In other
words, how can we leverage an assumption that our
learners are individually fairly good at what they do
so as to induce good collective behavior? For reasons
given above, we know that in routing the answer to this
question is not provided by SPA’s goals — some new
set of goals is needed.

In this article, we illustrate the Braess’ paradox in the
network domain, and present a COIN based algorithm
for network routing. We present simulations demon-
strating that in networks running ISPAs, the per packet



costs can be as much as 23 % higher than in networks
running COIN algorithms. In particular, even though it
only has access to imprecise estimates of costs (a handi-
cap not affecting the ISPA), the COIN algorithm almost
always avoids Braess’ paradox, in stark contrast to the
ISPA. In that the cost incurred with ISPA’s is presum-
ably a lower bound on that of a real-world SPA not
privy to instantaneous communication, the implication
is that COINs can outperform such real-world SPA’s. A
much more detailed investigation of the issues addressed
here can be found in (Wolpert & Tumer 2000a).

Braess’ Paradox

Braess’ paradox (Bass 1992; Cohen & Kelly 1990;
Cohen & Jeffries 1997; Korilis, Lazar, & Orda 1997)
dramatically underscores the inefficiency of the ISPA.
This “paradox” is perhaps best illustrated through a
highway traffic example given in (Bass 1992): There
are two highways connecting towns S and D. The cost
accrued by a traveler along either highway when z trav-
elers in total traverse that highway (in terms of tolls,
delays, or the like) is Vi(z) + Va(x), as illustrated in
Net A of Figure 1. So when z = 1 (a single traveler),
for either path total accrued cost is 61 units. If on
the other hand six travelers are split equally among the
two paths, they will each incur a cost of 83 units to
get to their destinations. Now suppose a new highway
is built connecting the two paths, as shown in Net B
in Figure 1. Note that the cost associated with taking
this highway is not particularly high (in fact for any
load higher than 1, this highway has a lower cost than
any other highway in the system). The benefit of this
highway is illustrated by the dramatically reduced cost
incurred by the single traveler: by taking the short-cut,
one traveler can traverse the network at a cost of 31
units (2 V3 + V3). Adding a new road has seemingly
reduced the traversal cost dramatically.
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Figure 1: Hex network with V; = 10z ; Vo = 50 +
z; V3=10+2

However consider what happens when six travelers
are on the highways in net B. If an ISPA is used to
make each routing decision, then at equilibrium each of
the three possible paths contains two travelers.! Due
to overlaps in the paths however, this results in each

We have in mind here the Nash equilibrium, where no

traveler accruing a cost of 92 units, which is higher than
than what they accrued before the new highway was
built. The net effect of adding a new road is to increase
the cost incurred by every traveler.

The COIN Formalism

One common solution to side-effect problems is to have
certain components of the network (e.g., a “network
manager” (Korilis, Lazar, & Orda 1995)) dictate ac-
tions to other routers. This solution can incur major
brittleness and scaling problems however. Another kind
of approach, which avoids the problems of a centralized
manager, is to provide the routers with extra incentives
that can induce them to take actions that are undesir-
able to them from a strict SPA sense. Such incentive
can be in the form of “taxes” or “tolls” added to the
costs associated with traversing particular links to dis-
courage the use of those links. Such schemes in which
tolls are superimposed on the routers’ goals are a spe-
cial case of the more general COIN-based approach of
replacing the goal of each router with a new goal. In the
COIN approach the new goals are specifically tailored
so that if they are collectively met the system maxi-
mizes throughput. A priori, a router’s goal need have
no particular relation with the cost accrued by that
router’s packets. Intuitively, in a COIN approach, we
provide each router with a goal that is “aligned” with
the global objective, with no separate concern for that
goal’s relation to the cost accrued by the traffic routed
by that router. To see how this can be done, in the
remainder of this section we summarize salient aspects
of the theory of COIN’s.

In this paper we consider systems that consist of a
set of agents, connected in a network, evolving across a
set of discrete time steps, t € {0,1,...}. Without loss of
generality, all relevant characteristics of an agent n at
time ¢ — including its internal parameters at that time
as well as its externally visible actions — are encapsu-
lated by a Euclidean vector C with components C

We call this the “state” of agent n at time ¢, Wlth C

the state of all agents at time ¢, while ( is the state of
all agents across all time. h

In this paper, we restrict attention to utilities of the
form 3, Ri(C,) for reward functions R; (simply

> Re(C,) for non-time-varying utilities). World util-
ity, G({), is an arbitrary function of the state of all

agents across all time. (Note that that state is a Eu-
clidean vector.) When 7 is an agent that uses a machine
learning algorithm to “try to increase” its private util-
ity, we write that private utility as g,({), or more gen-
erally, to allow that utility to vary in time, g, ,(().
Here we focus on the case where our goal, as COIN
designers, is to maximize world utility through the
proper selection of private utility functions. Intuitively,
the idea is to choose private utilities that are aligned

traveler can gain by changing strategies (Fudenberg & Ti-
role 1991).



with world utility, and that also have the property that
it is relatively easy for us to configure each agent so that
the associated private utility achieves a large value.

We need a formal definition of the concept of hav-
ing private utilities be “aligned” with G. Constructing
such a formalization is a subtle exercise. For exam-
ple, consider systems where the world utility is the sum
of the private utilities of the individual nodes. This
might seem a reasonable candidate for an example of
“aligned” utilities. However such systems are examples
of the more general class of systems that are “weakly
trivial”. It is well-known that in weakly trivial sys-
tems each individual agent greedily trying to maximize
its own utility can lead to the tragedy of the commons
(Hardin 1968) and actually minimize G. In particular,
this can be the case when private utilities are indepen-
dent of time and G = En gn- Evidently, at a minimum,

having G = ), gy is not sufficient to ensure that we
have “aligned” utilities; some alternative formalization
of the concept is needed.

A more careful formalization of the notion of aligned
utilities is the concept of “factored” systems. A system
is factored at time 7 when the following holds for each
agent 7 individually: A change at time 7 to the state
of 1 alone, when propagated across time, will result in
an increased value of g, -(¢) if and only if it results in
an increase for G({) (Wolpert & Tumer 2000b).

For a factored system, the side-effects of any change
ton’s t = 7 state that increases its private utility cannot
decrease world utility. There are no restrictions though
on the effects of that change on the private utilities of
other agents and/or times. In particular, we don’t pre-
clude an agent’s algorithm at two different times from
“working at cross-purposes” to each other, so long as
at both moments the agent is working to improve G.
In game-theoretic terms, in factored systems optimal
global behavior corresponds to the agents’ always be-
ing in a private utility Nash equilibrium (Fudenberg &
Tirole 1991). In this sense, there can be no TOC for
a factored system. As a trivial example, a system is
factored for g, , = G Vn.

Define the effect set of the agent-time pair (1, 7) at

¢, CEJ{)(C), as the set of all components C , Which

under the forward dynamics of the system have non-
zero partial derivative with respect to the state of agent
7 at t = 7. Intuitively, (1, 7)’s effect set is the set of
all components gn’, o which would be affected by a

change in the state of agent n at time 7. (They may or
may not be affected by changes in the ¢ = 7 states of
the other agents.)

Next, for any set o of components (n',t), define
CL,(¢) as the “virtual” vector formed by clamping the
components of the vector ¢ delineated in o to an arbi-
trary fixed value. (In this paper, we take that fixed
value to be 0 for all components listed in o.) The
value of the effect set wonderful life utility (WLU

for short) for o is defined as:

WLU,(¢) = G(¢) — G(CLs())- (1)

In particular, we are interested in the WLU for the ef-
fect set of agent-time pair (1, 7). This WLU is the dif-
ference between the actual world utility and the virtual
world utility where all agent-time pairs that are affected
by (n,7) have been clamped to a zero state while the
rest of ( is left unchanged.

Since we are clamping to 6, we can loosely view
(n,7)’s effect set WLU as analogous to the change in
world utility that would have arisen if (i, 7) “had never
existed”. (Hence the name of this utility - cf. the Frank
Capra movie.) Note however, that CL is a purely “fic-
tional”, counter-factual operator, in that it produces
a new ( without taking into account the system’s dy-
namics. The sequence of states the agent-time pairs in
o are clamped to in constructing the WLU need not
be consistent with the dynamical laws of the system.
This dynamics-independence is a crucial strength of the
WLU. It means that to evaluate the WLU we do not
try to infer how the system would have evolved if agent
n’s state were set to 0 at time 7 and the system evolved
from there. So long as we know ( extending over all
time, o, and the function G, we know the value of WLU.

If our system is factored with respect to private util-
ities {gy,-}, we want each agent to be in a state at
time 7 that induces as high a value of the associated
private utility as possible (given the initial states of
the other agents). Regardless of the system dynamics,
having ¢, = G Vn means the system is factored at
time 7. It is also true that regardless of the dynamics,
gnr = WLU, a1 Vn is a factored system at time 7

(proof in (Wolpert & Tumer 2000b)). However, note
that since each agent is operating in a large system, it
may experience difficulty discerning the effects of its ac-
tions on G when G sensitively depends on all the myriad
components of the system. Therefore each  may have
difficulty learning from past experience what to do to
achieve high g,  when g, = G.2

This problem can be mitigated by using effect set
WLU as the private utility, since the subtraction of
the clamped term removes much of the “noise” of the
activity of other agents, leaving only the underlying
“signal” of how the agent in question affects the util-
ity. (This reasoning is formalized as the concept of
“learnability” (Wolpert & Tumer 2000b).) Accord-
ingly, one would expect that setting private utilities to

In particular, in routing in large networks, having pri-
vate rewards given by the world reward functions means
that to provide each router with its reward at each time
step we need to provide it the full throughput of the entire
network at that step. This is usually infeasible in practice.
Even if it weren’t though, using these private utilities would
mean that the routers face a very difficult task in trying
to discern the effect of their actions on their rewards, and
therefore would likely be unable to learn their best routing
strategies.



WLU’s ought to result in better performance than hav-
ing gy =G Vn, T

Simulation Overview

In this section we describe the model used in our simula-
tions. We then present the ISPA in terms of that model,
and apply the concepts of COIN theory to that model
to derive private utilities for each agent. Because these
utilities are “factored” we expect that agents acting to
improve their own utilities will also improve the global
utility (overall throughput of the network). We end by
describing a Memory Based (MB) machine learning al-
gorithm that each agent uses to estimate the value that
its private utility would have under the different can-
didate routing decisions. In the MB COIN algorithm,
each agent uses this algorithm to make routing decisions
aimed at maximizing its estimated utility.

Simulation Model

As in much of network analysis, in the model used in
this paper, at any time step all traffic at a router is a set
of pairs of integer-valued traffic amounts and associated
ultimate destination tags (Bertsekas & Gallager 1992).
At each such time step ¢, each router r sums the integer-
valued components of its current traffic at that time
step to get its instantaneous load. We write that
load as z,(t) = 3, ®a(t), where the index d runs over
ultimate destinations, and z, 4(¢) is the total traffic at
time t going from r towards d. After its instantaneous
load at time ¢ is evaluated, the router sends all its traffic
to the next downstream routers, according to its routing
algorithm. After all such routed traffic goes to those
next downstream routers, the cycle repeats itself, until
all traffic reaches its destination. In our simulations, for
simplicity, traffic was only introduced into the system
(at the source routers) at the beginning of successive
disjoint waves of L consecutive time steps.

In a real network, the cost of traversing a router de-
pends on “after-effects” of recent instantaneous loads,
as well as the current instantaneous load. To simu-
late this effect, we use time-averaged values of the load
at a router rather than instantaneous load to deter-
mine the cost a packet incurs in traversing that router.
More formally, we define the router’s windowed load,
Z.(t), as the running average of that router’s load
value over a window of the previous W timesteps:
Z.(t) = % Zi’:t_W+1 2(t') = >4 Xra (1), where the
value of X, 4(f) is set by the dynamical law X, 4(t) =
% Ei,:t_W_H xp,q(t')). (W is always set to an integer
multiple of L.) The windowed load is the argument
to a load-to-cost function, V'(-), which provides the
cost accrued at time t by each packet traversing the
router at this timestep. That is, at time ¢, the cost for
each packet to traverse router r is given by V(Z,.(t)).
Different routers have different V'(*), to reflect the fact
that real networks have differences in router software
and hardware (response time, queue length, processing
speed etc). For simplicity, W is the same for all routers

however. With these definitions, world utility is

G(g): Et,r 2 (t) Vi (Z,(t)) (2)

Our equation for G explicitly demonstrates that, as
claimed above, in our representation we can express
G(¢) as a sum of rewards, >, R¢(¢ ,), where R(C ) can

be written as function of a pair of (r d)-indexed vectors:

Re(@ra(t), Xra(t)) = 22, q@ra(®)Ve g Xra (1))

Routing Algorithms

At time step t, ISPA has access to all the windowed
loads at time step t—1 (i.e., it has access to Z,.(t—1) Vr),
and assumes that those values will remain the same at
all times > ¢. (Note that for large window sizes and
times close to ¢, this assumption is arbitrarily accurate.)
Using this assumption, in ISPA, each router sends pack-
ets along the path that it calculates will minimize the
costs accumulated by its packets.

We now apply the COIN formalism to the model
described above to derive the idealized version of our
COIN routing algorithm. First let us identify the agents
n as individual pairs of routers and ultimate destina-
tions. So C , s the vector of traffic sent along all links

exiting n’s router tagged for n’s ultimate destination,
at time t. Next, in order to compute WLUs we rnust
estimate the associated effect sets.

In the results presented here, the effect set of an agent
is estimated as all agents that share the same destina-
tion as that agent.? Based on this effect set, the WLU
for an agent 7 is given by the difference between the
total cost accrued by all agents in the network and the
cost accrued by agents when all agents sharing the same
destination as 1 are “erased.” More precisely, using Eq.
2, one can show that each agent n that shares a desti-
nation d, will have the following effect set WLU:

94(C) G(Q) = G(CLers (9))

ZZ [2r(8) Vi (Z: (1)) —
Z xr,d’ t r Z Xr,d”(t))] (3)

d'#d d''#d
Notice that the summand in Eq. 3 is computed at each
router separately from information available to that
router. Subsequently those summands can be propa-
gated across the network and the associated g4’s “rolled
up” in much the same way as routing tables updates are
propagated in current routing algorithms.

Unlike the ISPA, the MB COIN has only limited
knowledge, and therefore must predict the WLU value
that would result from each potential routing decision.
More precisely, for each router-ultimate-destination
pair, the associated agent estimates the map from win-
dowed loads on all outgoing links (the inputs) to WLU-
based reward (the outputs). This is done with a single-
nearest-neighbor algorithm. Next, each router could

3Exact factoredness obtains so long as our estimated ef-
fect set contains the true effect set; set equality is not nec-
essary.



send the packets along the path that results in out-
bound traffic with the best (estimated) reward. How-
ever to be conservative, in these experiments we instead
had the router randomly select between that path and
the path selected by the ISPA (described below).

SIMULATION RESULTS

Based on the model and routing algorithms discussed
above, we have performed simulations to compare the
performance of ISPA and MB COIN. In all cases traf-
fic was inserted into the network in a regular, non-
stochastic manner at the sources. The results we re-
port are averaged over 20 runs. We do not report error
bars as they are all lower than 0.05. In both networks
we present?, ISPA suffers from the Braess’ paradox,
whereas the MB COIN almost never falls prey to the
paradox for those networks. For no networks we have
investigated is the MB COIN significantly susceptible
to Braess’ paradox.

Hex Network

In Table 1 we give full results for the network in Fig.
1. In Table 2 we report results for the same network
but with load-to-cost functions which incorporate non-
linearities that better represent real router characteris-
tics. (Instances of Braess’ paradox are shown in bold.)

For ISPA, although the per packet cost for loads of
1 and 2 drop drastically when the new link is added,
the per packet cost increases for higher loads. The MB
COIN on the other hand uses the new link efficiently.
Notice that the MB COIN’s performance is slightly
worse than that of the ISPA in the absence of the addi-
tional link. This is caused by the MB COIN having to
use an (extremely unsophisticated) learner to estimate
the WLU values for potential actions whereas the ISPA
has direct access to all the information it needs.

For this particular network, the equilibrium solu-
tion for the MB-COIN consists of ignoring the newly
added middle link. This solution is “unstable” for the
ISPA, since any packet routed along the middle path
will provide a smaller cost to the router from which it
was routed than would otherwise be the case, so that
the system settles on the the suboptimal Nash Equilib-
rium solution discussed above. However, by changing
the utilities of the agents (from a shortest path to the
WLU), the COIN approach moves the Nash equilibrium
to a more desirable location in the solution space.

Butterfly Network

The next network we investigate is shown in Figure 2.
We now have three sources that have to route their
packets to two destinations (packets originating at S;
go to D;, and packets originating at S» or S3 go to
D»). Initially the two halves of the network have min-
imal contact, but with the addition of the extra link

“See (Wolpert & Tumer 2000a) for additional experi-
ments.

Table 1: Average Per Packet Cost for HEX network for
Vi=50+z; Vo=10z; V3 =10+ =z .

Load | Net [ ISPA | MB COIN

1 A 95.50 95.56
B 31.00 31.00
2 A 61.00 61.10
B 52.00 51.69
3 A 66.50 66.65
B | 73.00 64.45
4 A 72.00 72.25
B | 87.37 73.41

Table 2: Average Per Packet Cost for HEX network for
Vi=50+4+1log(1+x); Vo=10z; V3 =log(l +x) .

Load | Net [ ISPA | MB COIN

1 A 55.41 55.44
B 20.69 20.69
2 A 60.69 60.80
B 41.10 41.10
3 A 65.92 66.10
B 61.39 59.19
4 A 71.10 71.41
B | 81.61 69.88

two sources from the two halves of the network share a
common router on their potential shortest path.
D,

D, D, D,

Vi

Net A Net B
Figure 2: Butterfly Network

Table 3 presents results for uniform traffic through all
three sources, and then results for asymmetric traffic.
For the first case, the Braess’ paradox is apparent in the
ISPA: adding the new link is beneficial for the network
at low load levels where the average per packet cost is
reduced by nearly 20%, but deleterious at higher levels.
The MB COIN, on the other hand, provides the bene-
fits of the added link for the low traffic levels, without
suffering from deleterious effects at higher load levels.

For the asymmetric traffic patterns, the added link
causes a drop in performance for the ISPA, especially
for low overall traffic levels. This is not true for the MB
COIN. Notice also that in the high, asymmetric traffic
regime, the ISPA performs significantly worse than the
MB COIN even without the added link, showing that
a bottleneck occurs on the right side of network alone.



Table 3: Average Per Packet Cost for BUTTERFLY
network for Vi = 50 + log(1 + z) ; Vo = 10z ; V3 =
log(1+ x).

Loads (S1,S2,53) | Net | ISPA | MB COIN

I11 A | 1121 112.7
B | 921 92.3
2,22 A | 1233 124.0
B |133.3| 1225
144 A | 1448 1126
B | 156.5 142.3
32.1 A | 813 82.5
B | 995 81.0
6,42 A | 960 9.1
B | 105.3 94.0
9,6,3 A [ 1055 98.2
B | 106.7 98.8
CONCLUSION

Collective Intelligence design is a framework for control-
ling decentralized multi-agents systems so as to achieve
a global goal. In designing a COIN, the central issue
is determining the private goals to be assigned to the
individual agents. One wants to choose those goals so
that the greedy pursuit of them by the associated agents
leads to a globally desirable solution. We have summa-
rized some of the theory of COIN design and derived a
routing algorithm based on application of that theory to
our simulation scenario. In our simulations, the COIN
algorithm induced costs up to 23 % lower than the ideal-
ized version of conventional algorithms, the ISPA. This
was despite the ISPA’s having access to more informa-
tion than the MB COIN. Furthermore the COIN-based
algorithm avoided the Braess’ paradoxes that seriously
diminished the performance of the ISPA.

In the work presented here, the COIN-based algo-
rithm had to overcome severe limitations. The estima-
tion of the effect sets, used for determining the private
goals of the agents was exceedingly coarse. In addition,
the learning algorithms used by the agents to pursue
those goals were particularly simple-minded. That a
COIN-based router with such serious limitations con-
sistently outperformed an ideal shortest path algorithm
demonstrates the strength of the proposed method.
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